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Fig. 1. Neural reconstruction and rendering of large indoor spaces from unstructured photographs is a challenge, especially due to complex reflections on
polished surfaces like wood and metal that contribute significantly to the realism of free-viewpoint renderings. Our proposed method enables interactive
neural rendering of large indoor scenes with more realistic view-dependent e�ects than existing methods. Screenshots from interactive renderings of our
reconstructed scenes at novel viewpoints: (a)Living Roomscene from Xu et al. [2021]; note the ceiling spotlight reflection in the floor (top) and the thin light
reflection on the ceiling (bo�om). (b)Co�ee Shop; note the reflected co�ee machine and surrounding environment in the polished metal door (top). Similar
highlights reflected in polished wood, glass, and plastic in (c)Living Roomscene from INRIA [Philip et al. 2021], (d)Bar, and (e)Sofascenes.

We propose a scalable neural scene reconstruction and rendering method to
support distributed training and interactive rendering of large indoor scenes.
Our representation is based ontiles. Tile appearances are trained in parallel
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through a background sampling strategy that augments each tile with distant
scene information via a proxy global mesh. Each tile has two low-capacity
MLPs: one for view-independent appearance (di�use color and shading) and
one for view-dependent appearance (specular highlights, re�ections). We
leverage the phenomena that complex view-dependent scene re�ections can
be attributed to virtual lights underneath surfaces at the total ray distance
to the source. This lets us handle sparse samplings of the input scene where
re�ection highlights do not always appear consistently in input images. We
show interactive free-viewpoint rendering results from �ve scenes, one of
which covers an area of more than100m2. Experimental results show that
our method produces higher-quality renderings than a single large-capacity
MLP and �ve recent neural proxy-geometry and voxel-based baseline meth-
ods. Project webpage: https://xchaowu.github.io/papers/scalable-nisr.
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1 INTRODUCTION
Reconstructing real-world 3D scenes and rendering them photo-
realistically at interactive rates has long been desired in visual com-
puting. Given captured images and reconstructed scene geometry,
many image-based rendering (IBR) techniques can synthesize re-
alistic renderings at novel views to enable free-viewpoint naviga-
tion [Hedman et al. 2018, 2016; Xu et al. 2021]. Past methods have
required high input sample rates or high-quality geometry to avoid
ghosting or tearing artifacts within rendered images.

Recently, neural methods have gained popularity in IBR due
to their capability to synthesize realistic novel views with view-
dependent e�ects. For instance, NeRF [Mildenhall et al. 2020] op-
timizes multi-layer perceptron neural networks (MLPs) to output
volume radiance and density by rendering views via volume inte-
gration along rays. Applying NeRF to model large scenes requires
large MLPs to maintain detailed appearance, and requires long ren-
dering times as we must sample 3D points along cast rays and pass
them to an MLP to obtain volume radiance and density. Further,
given sparse inputs in which view-dependent highlights do not
consistently appear, this model fails to reproduce re�ections and
highlights in reconstructions.

A common strategy to accelerate neural rendering is to trade
memory for time. For example, one approach is to explore sparse
voxel grids to cache or bake di�erent outputs of the MLP. Examples
include deep radiance maps [Garbin et al. 2021], spherical harmonic
coe�cients [Yu et al. 2021a], and the combination of RGB color,
volume density, and features [Hedman et al. 2021]. While these
approaches e�ciently speed up rendering, memory costs are still
high for large 3D scenes, which can be a bottleneck in training that
limits scene detail or scale. In KiloNerf [Reiser et al. 2021], thousands
of tiny MLPs represent the scene to avoid a high memory footprint.
However, this method needs to train a single large-capacity MLP as
a teacher to begin training tiny MLPs, which increases training time
and hinders its application to large scenes. In summary, applying
neural techniques to large scenes remains a technical challenge.

We propose a neural scene rendering method for static indoor
scenes that is scalable in both training and rendering. Given an initial
reconstructed proxy geometry (theglobal mesh), we partition the
3D space into tiles each with MLPs to avoid training a single large-
capacity MLP. Based on this tile-based neural scene representation,
we make two key improvements to achieve a scalable solution:

(1) We introduce a background sampling method to enable parallel
training of tile-based MLPs. This uses the global mesh to release
tile dependence during training by sampling background points
at ray intersections with the proxy. To tolerate errors in the
proxy geometry, we sample over intervals around the proxy
surface. Background sampling allows a tile to be trained on a
single GPU, and thus the allocation of tiles to di�erent GPUs in
a load-balanced manner with reduced communication overhead.
A second training step and post-process CNN re�nes any tile
di�erences, overall resulting in a more scalable solution.

(2) Each tile has asurface MLPto encode view-independent compo-
nents, such as di�use colors and shadows, and are�ection MLP
to encode view-dependent specular re�ections. Such a two-MLP
representation, termed tMLPs, lets us leverage the phenomena

that the view-dependent re�ection of a planar surface can be
attributed to a re�ected view-independent virtual light source.
This approach reduces the required number of training images
to capture complex appearance highlights. Moreover, tMLPs en-
able di�erent network capacity, storage, and rendering schemes
for view-independent and view-dependent components. We use
an octree to store colors and volume densities for the surface
MLP, and neural weights with a �xed parameter budget for the
re�ection MLP. Together, these allow interactive rendering (20
fps) of complex appearance over large scenes.

Over �ve scenes, we demonstrate that our method can produce
realistic interactive rendering results for free-viewpoint navigation
of indoor scenes of more than100m2. Our method can automati-
cally handle opaque surfaces with re�ections and transparent sur-
faces that have an opaque surface behind them within a tile, like
glass-fronted cabinets. In comparisons to state-of-the-art neural
rendering methods, our rendering results of indoor scenes with
complex view-dependent e�ects show improved quality, especially
in the reproduction of highlights and re�ections.

2 RELATED WORK
Image-based rendering (IBR) has a long history in visual comput-
ing [Gortler et al. 1996; Levoy and Hanrahan 1996; Shum and Kang
2000; Zhang and Chen 2003]. Recently, IBR results show signi�cant
improvements thanks to neural rendering. First, we provide a brief
overview of this current topic, then we focus on IBR works that are
most relevant to our approach.

2.1 Neural Rendering
Neural rendering aims to incorporate neural networks into the
pipeline for rendering high quality images [Tewari et al. 2020, 2021].
Applications include volumetric novel view synthesis [Lombardi
et al. 2019; Pandey et al. 2019; Sitzmann et al. 2019a], local light �eld
fusion [Mildenhall et al. 2019], neural textures [Thies et al. 2019],
semantic photo manipulation [Bau et al. 2020; Karras et al. 2019;
Park et al. 2019b], relighting [Meka et al. 2019; Philip et al. 2019;
Zhou et al. 2019], and animatable photo-realistic avatars [Liu et al.
2021, 2019; Peng et al. 2021a,b]. One recent example is Mixtures of
Volumetric Primitives [Lombardi et al. 2021]. This approach employs
a set of volumetric primitives to represent a scene or object, creating
high-quality real-time renderings of challenging materials such as
hair and clothing. Our work also partitions the 3D space into regions;
however, we focus on rendering indoor scenes with re�ections.

2.2 IBR with Geometric Proxies
Geometric proxies are frequently exploited in IBR to reduce the num-
ber of captured images required and resolve the ambiguity of cross-
image correspondence [Gortler et al. 1996]. Debevec et al. [1998]
proposed novel view synthesis by view-dependent texture mapping
with manually constructed geometric proxies. View-dependent tex-
turing is widely used in IBR [Buehler et al. 2001; Chen and Williams
1993; Matusik et al. 2000, 2002; Miller and Rubin 1998; Wood et al.
2000]. However, these approaches often produce ghosting artifacts
due to geometry reconstruction errors, especially near occlusion
boundaries. Several approaches seek to reduce these artifacts using
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optical �ow correction [Casas et al. 2015; Du et al. 2019; Eisemann
et al. 2008], per-view re�nements that align geometric and image
boundaries [Chaurasia et al. 2013; Hedman et al. 2018, 2016; Xu
et al. 2021], or soft scene forms [Penner and Zhang 2017]. To fur-
ther reduce ghosting and aliasing artifacts, DeepBlending [Hedman
et al. 2018] proposed to train a CNN to predict adaptive per-pixel
blending weights, and Xu et al. [2021] employed a post-processing
network to perform temporal super-sampling.

Another line of work [Kopf et al. 2013; Rodriguez et al. 2020; Sinha
et al. 2012; Xu et al. 2021] aims to use two-layer representations
to separate the surface and re�ection components of appearance
for improved view-dependent e�ects. Along this line, multi-layer
representations, such as Multi-plane Image (MPI) or Layered Depth
Image (LDI) from input images [Flynn et al. 2019; Srinivasan et al.
2019; Szeliski and Golland 1999; Zhou et al. 2018], were proposed to
handle occlusions and re�ection e�ects simultaneously.

View interpolation can also exploit learned features. Riegler et
al. [2020] map features extracted from input images to object sur-
faces and leverage a recurrent network to generate novel views.
Rendering quality can improve through view-dependent on-surface
feature aggregation [Riegler and Koltun 2021]. Philip et al. [2021]
proposed a hybrid image- and physically-based rendering algorithm
that enables both the navigation and relighting of indoor scenes.

This paper focuses on representations and algorithms that address
challenges in scaling-up neural view-synthesis techniques to large
indoor scenes while still representing re�ections.

2.3 IBR with Neural Fields
This line of research advocates optimizing neural networks to es-
timate �elds that represent the geometry and appearance of ob-
jects [Niemeyer et al. 2019; Park et al. 2019a; Sitzmann et al. 2019b;
Xie et al. 2022]. Neural networks take point coordinates as input and
output quantities like volume density, occupancy, signed distance,
or radiance. For example, neural radiance �elds (NeRF) [Milden-
hall et al. 2020] is an MLP-based scene representation of volume
density and view-dependent color per 3D location that can provide
photo-realistic rendering. Many follow-up works improve robust-
ness, quality [Barron et al. 2021; Martin-Brualla et al. 2021; Verbin
et al. 2022; Zhang et al. 2020], and generalization [Chan et al. 2021;
Rematas et al. 2021; Schwarz et al. 2020; Trevithick and Yang 2020;
Yu et al. 2021b], optimize camera poses [Lin et al. 2021; Sucar et al.
2021; Wang et al. 2021; Yen-Chen et al. 2021; Zhu et al. 2022], and
apply to dynamic scenes [Attal et al. 2021; Gafni et al. 2021; Park
et al. 2020, 2021; Pumarola et al. 2021].

One major issue is that both training and rendering of neural �elds
require substantial compute, and di�erent methods can accelerate
both. Examples include avoiding samples in vacant areas [Liu et al.
2020a], dividing the 3D space into thousands of small regions and
training a tiny MLP for each region [Reiser et al. 2021], caching or
baking values learned by the MLP into a representation [Garbin
et al. 2021; Hedman et al. 2021; Wizadwongsa et al. 2021; Yu et al.
2021a], optimizing a representation directly without an MLP [Sun
et al. 2021; Yu et al. 2022]; and pre-computing values during volume
rendering [Lindell et al. 2021; Sitzmann et al. 2021].

Several recent methods have proposed neural representations for
the relighting and rendering of 3D scenes with complex appearance.
These methods go beyond the absorption-emission volumetric ren-
dering model [Max 1995]. NeRFReN [Guo et al. 2022] models com-
plex re�ections by splitting a scene into transmitted and re�ected
components with separate neural radiance �elds. Ref-NeRF [Verbin
et al. 2022] trains a spatial MLP to output di�use colors and surface
normals, then uses these normals with a re�ected ray direction to
reproduce high-frequency specular re�ections via a directional MLP.
Neural re�ectance �elds [Bi et al. 2020] store volume density, sur-
face normals, and bi-directional re�ectance distribution functions
(BRDFs), allowing rendering under arbitrary lighting conditions.
PhySG [Zhang et al. 2021a] and NeRD [Boss et al. 2021] use mixtures
of spherical Gaussians to represent environment lighting and scene
BRDFs. NeRV [Srinivasan et al. 2021] employs an MLP to directly
output the visibility from a 2D light direction to a 3D point, enabling
shadows and self-occlusion e�ects. Finally, NeRFactor [Zhang et al.
2021b] uses data-driven bidirectional re�ectance distribution func-
tions (BRDF) priors from real-world BRDF measurements [Matusik
et al. 2003] and smoothness regularizations to recover neural �elds
of surface normals, light visibility, albedo, and BRDFs.

While these works can produce photo-realistic view-dependent
renderings, and some allow interactive or real-time rendering, they
typically do not apply to large scenes. We provide a scalable solution
for indoor scene rendering by designing a tile-based MLP with
surface and re�ected appearance components that supports parallel
training and adaptive storage allocation. Our solution achieves 20fps
on a workstation PC when rendering large indoor scenes.

3 SCALABLE NEURAL SCENE REPRESENTATION
When using MLPs, the architecture and capacity determine the
e�ciency and quality of the rendering. Larger scenes require larger
networks to achieve equivalent quality, and require more time in
volume rendering to integrate points over larger distances. Our goal
is to reduce network size without sacri�cing quality such that neural
rendering can scale to large scenes both during optimization and
for interactive rendering.

We propose two approaches to reach this goal (Fig. 2): First, we
create tilesT over the volumetric scene and optimize per-tile MLPs.
This has two bene�ts:

(1) Tile MLPs are locally low capacity. This allows faster optimiza-
tion than one large scene network, but still provides the ability
to represent a complex scene collectively.

(2) Tiles can be trained in parallel using a new background sampling
method. Further, along a speci�c ray, we can coordinate 3D point
samplings across MLPs for e�ciency.

Second, rather than encode radiance absolutely at each point and in
each direction in the volume [Mildenhall et al. 2020], we use two
MLPs�tMLPs�for view-independent re�ection cB (e.g., di�use) and
additive view-dependent re�ectioncA (e.g., specular) such that �nal
color c = cB ¸ cA. This has three bene�ts:

(3) Once view-independent MLPs have been optimized, we can
sample them andbakethem for classical fast rendering. For
this, we use a voxel octree of depth 2, though voxel hashing
approaches are also possible [Nieÿner et al. 2013].
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Fig. 2. Scalable neural scene representation.Tiles are allocated based on a global mesh proxy. Each tile has two MLPs: 1) Thesurface MLPthat encodes density
and view independent color, which is later stored in an octree for fast rendering. 2) Thereflection MLPthat encodes view-dependent e�ects like highlights
using virtual points `underneath' the surface at the ray distance of the reflected light. Color outputs from both paths are combined in the final rendering.

(4) Capturing specular re�ections accurately requires high angular
sampling in the input images, which is not practical for large
inside-out real-world scenes. Separating re�ections allows us to
represent them as virtual points that lie underneath surfaces at
the distance of there�ected geometry. For example, the glossy
re�ection of a ceiling light on a polished wooden �oor is repre-
sented by virtual points beneath the wooden �oor. This reduces
the need for high angular input sampling on planar surfaces
that are common in indoor environments. It is also bene�cial
on rough or slightly curved convex surfaces, as re�ections can
be clustered virtually underneath the surface geometry.

(5) Both previous bene�ts allow view-dependent MLPs for specular
re�ections to again be lower capacity, easing optimization and
hastening rendering.

In the remainder of Section 3, we describe the input, representa-
tion, rendering, and reconstruction optimization losses without any
practical implementation details. Then, in Section 4, we describe
how tMLPs are practically constructed, and in Section 5 how they
are practically rendered including a CNN-based post-processing.

3.1 Input and Preprocessing
Throughout the document, we usê” to denote input images, patches,
and colors, as contrasted with their reconstructed counterparts.
Given a set of imageŝ� 2 ^I of an indoor scene, we reconstruct
camera intrinsic and extrinsic matrices. This let us de�ne a set of
raysr̂ 2 R̂ each with an origino, a direction8 , and a color̂c from
an input pixel. We also assume aglobal meshreconstruction of
the scene generated by existing software [CapturingReality 2016;
Schonberger and Frahm 2016] (See Section 7.1).

To help separate view dependent from view independent re�ec-
tions, for each input ray we compute a view independent color�c.
As specular re�ections such as highlights vary surface appearance
when a point is viewed from di�erent angles, with su�cient input
views we can remove specular re�ections: Views with large angular
di�erence to a reference view likely do not contain highlights, so

weighting the many appearances of a world point by their viewing
directions will remove specular highlights.

Given a reference view raŷr8, we intersect it with the global
mesh, then warp all images containing views of that point into the
reference view to create raysr 9. Then, view independent color�c is:

�c8 =
#Õ

9

F 9
Í #

9 F 9
ĉ9• whereF 9 = 1 � 8 9 � 8 8• (1)

where# is the number of views of the point,̂c9 is the pixel color
warped from the9th view via the global mesh, and weightF 9prefers
rays with a large angle di�erence to8th ray. Computing Eq. 1 for all
input pixels produces a second set of images where view-dependent
e�ects like specular re�ections have largely been removed.

While using the minimum or the second darkest color from all
view directions is one strategy to obtain di�use colors, minor in-
accuracies in the global mesh and camera poses create slight edge
misalignments between an image and the geometry and lead to
noise from occlusion errors. In practice, we found our weighting
scheme was more robust to noise from these errors.

3.2 Representation and Rendering
Representation.We de�ne a 3D point as input to our neural �elds

asx = fG•~• Ig. For view-independent re�ection, we de�ne asurface
MLP5B

\ : R3 ! R4 with parameters\ that outputs di�use colorcB

and volume densityf B: 5B
\ ¹xº = ¹cB• f Bº. These points lie in a space

on or in front of the surface of the global mesh.
For the view-dependent re�ection, we de�ne a secondre�ection

MLP 5A
\ : R5 ! R28 with respect to a pointx and a ray direction8 .

These points lie in a space behind the surface of the global mesh
and represent re�ected light at a virtual location (Fig. 2). Along with
density, rather than output view-dependent colorcA, function 5A

\
outputs spherical harmonic (SH) coe�cientskA [Müller 1966] to
represent view-dependent re�ection in all directions at pointx:

5A
\ ¹xº = ¹kA• f Aº• kA = ¹: <

; º< :� ; � < � ;
; :0� ; � ;<0G

• (2)
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GT tMLPs Single MLP

Fig. 3. Sparse sampling causes reflection reconstruction problems for simpler
representations.Over 27 input images of the framed painting in theBar
scene, only 8 contain the reflections of a lamp in the scene�a typical sce-
nario for inside-out indoor scenes. A single MLP that uses SH coe�icients
at the surface with an equivalent number of network parameters fails to
reconstruct the highlight, whereas our tMLPs approach of explicitly model-
ing reflections at virtual distances fairs be�er.

where; and< are the degree and order of the SH functions. The
maximum degree of SH functions;<0G in our system is set to 2 to
balance between quality and speed. To compute the view-dependent
color cA with respect to ray direction8 :

cA = 6¹kA•8 º = ( ©
­
«

;<0GÕ

;=0

;Õ

< =� ;

: <
; . <

; ¹8 ºª®
¬

• (3)

Where. <
; : S2 ! R are SH basis functions;( ¹�º is the sigmoid

function as the interval of color values is normalized to be»0””1¼.
We use SHs for each RGB channel, sokA is a 27-dimensional vector.

Rendering tMLPs by Volume Ray Casting.Given a camera pose, we
de�ne a pointCunits along a viewing ray:A¹Cº = x = o ¸ C8 , where
o is the ray origin (camera center) and8 is the ray direction. Across
tiles, we sample points along the ray and sum the color outputs
cB 2 »0•1¼3 andcA 2 »0•1¼3 from both 5B

\ and5A
\ :

cB =
#Õ

8

) 8 � ¹1 � exp¹� f B
8X8ºº � cB

x8
• (4)

cA =
"Õ

8

) 8 � ¹1 � exp¹� f A
8X8ºº � cA

x8
• (5)

c = max¹min¹cB ¸ cA•1º•0º• (6)

where) 8 = exp¹�
Í 8� 1

: =1 f x: X: º is the transmittance value,X8 is the
distance between adjacent samples (forf B• f A equivalently), and
"• # are the number of sampled points along the ray.

Discussion.Point lights represented at re�ected distances from
planar surfaces need not be view dependent, making the SH rep-
resentation seem redundant. However, while salient re�ections in
indoor scenes frequently appear on planar surfaces like �oors, ceil-
ings, and tables, many re�ective surfaces are not perfectly �at. For
re�ections of light sources that themselves are view dependent or
for slightly non-planar or curved surfaces with re�ected highlights,
position-dependent re�ections vary with the surface normal. Using
SH coe�cients lets us represent some of this variation (Fig. 4).

GT 2nd-order SH 0th-order only

Fig. 4. SH reflection representation helps produce more accurate highlights.
Top:Training a model for virtual reflected lights underneath the global mesh
surface that exhibit view-independent reflectance (equivalent to 0th-order
SH) fails to reproduce any specular highlights on curved surfaces, while our
approach fares be�er.Bo�om: On planar reflective surfaces like a reflective
floor, training with 0th-order SH can in principle capture view-independent
reflectance, but the quality degrades.

While predicting SH coordinates at each location is similar to
PlenOctree [Yu et al. 2021a], our method stores re�ection MLP
weights instead of a SH coe�cient octree to reduce memory use.

3.3 Reconstruction Losses
To optimize the representation, we minimize a color lossL 2 between
the rendered ray colorc8 and the captured image color̂c8:

L 2 =
1
#

Õ

82#

j jĉ8 � c8j j22 (7)

where8is the ray index and# is the number of rays in patch? 2 P.
We organize neighboring rays during training into91� 91patches
because this lets us penalize a structural similarity (SSIM) loss
L SSIM[Wang et al. 2004] and a VGG perceptual lossL VGG [Johnson
et al. 2016] against captured image patches?̂:

L SSIM= 1 � SSIM¹?̂• ?º• (8)

L VGG = kE¹?̂º � E¹?ºk2• (9)

whereEcomputes activations using the �rst three layers of a VGG
network [Simonyan and Zisserman 2014].

To obtain view-independent colors from captured images, we
formulate the surface color loss termL B between the color output
by the surface MLPcBand the preprocessed weighted average input
ray color �c that has re�ection e�ects removed:

L B =
1
#

Õ

82#

j j�c8 � cB
8j j22” (10)

Finally, noise in reconstructed camera poses can lead to random
color and densities at some 3D points. This phenomenon is mag-
ni�ed for re�ections since our virtual light sources are at re�ected
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Fig. 5. Penalizing additional SH reguarlizerL REGand surface color lossL B
improves separation of view independent and dependent reflection.Results
show the reflection of a ceiling spotlight on a polished wooden floor in
Living Room from Xu et al.[2021].

distances from the view point. To alleviate this issue, we add a reg-
ularization lossL REGto encourage non-0-th order SH coe�cients
output by re�ection MLP to only be used when necessary:

L REG=
1

#A

# AÕ

9

¹kA
x9

º2• kA
x = : <

; ¹Gº< :� ; � < � ;
; :1� ; � ;<0G

• (11)

where #A indicates the number of sampled 3D points along the
ray, and subscript9indexes the points. This slightly penalizes the
view dependence of the re�ections, without penalizing the overall
intensity (regularizing 0-th order SHs would darken re�ections).

The total loss used in training is:

L = _2L 2 ¸ _SSIML SSIM¸ _VGGL VGG ¸ _BL B ¸ _REGL REG (12)

where_2• _SSIM• _VGG• _B and_REGare determined empirically.

4 TILE-BASED SCENE CONSTRUCTION
While the representation and reconstruction losses are relatively
straightforward, scaling volume rendering through tiles is practi-
cally challenging as integrating radiance along a ray requires points
from across tiles. This section describes how we tackle three techni-
cal issues in tile-based MLP scene construction: removing depen-
dence between tiles withbackground samplingto allow parallel
tile training, accommodating sparse input images and sparse light
sources withre�ection tile groups, and removing tile boundary ar-
tifacts with two-pass training. We also discuss pre-processing and
post-processing to help overcome these challenges.

4.1 Pre-processing
Volume Tiling.We divide the global mesh's bounds into30 �

30� 30cm tiles, based on a scale estimated from a known scene
object. Then, we cull tiles that do not intersect any global mesh
per-triangle bounding box. We expand bounding boxes by� 1cm to
avoid culling errors due to minor reconstructed geometry errors or

Background samples

Tile

With background sampling Without

Fig. 6. Background sampling enables parallel tMLP training. Top:If a ray does
not terminate within a tile, we additionally sample 32 points along the ray
where it intersects the global mesh to reproduce world points that a�ect
a ray's integral. This removes the dependency between tiles at training
time. Bo�om: Background sampling also improves reconstruction accuracy
because it allows an individual tile to disambiguate the location of radiance
within the volume. Without background sampling, we see blurring from
phantom volume density; with, we see improved surface texture on the
wooden floor and table books (Living Room from Inria[Philip et al. 2021]).

possible missing geometries. Finally, we store the indices of global
mesh triangles inside a tile to speed up later computations.

Assigning Input Rays to Tiles.For each input rayA, we obtain
a set of candidate tilesT 2 using fast voxel traversal [Amanatides
et al. 1987]. Within each candidate tile, we intersect the ray with all
global mesh triangles of the tile and record the intersection point?
that is closest to the camera, if any. If a tile contains? or is closer
to the camera than?, thenAis assigned as a training ray for that
tile. Tiles farther than? are not trained byA. As stated earlier, this
assumes that scene objects are opaque or that transparent objects
like glass lie within a tile in front of an opaque surface within the
global mesh, such as for a window onto another building (Living
Roomfrom Xu et al. [2021]; kitchen area) or a glass display cabinet
(Co�ee Shop; please see Appendix A). For objects that do not appear
in the global mesh but that require volumetric reconstruction, we
mark their tiles for inclusion or add proxy geometry (Appendix B).

4.2 Background Sampling for Parallel Tile Training
Each ray cast might pass through multiple tiles before termination,
creating dependencies between tMLPs that require more memory
and compute or ine�cient access patterns during training. To avoid
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tile dependence and allow tMLPs to be trained in parallel and across
multiple GPUs, we deliberately sample and reproduce 3D points
beyond a tile. We call thisbackground sampling(Fig. 6).

Background sampling handles the case when a ray intersecting a
tile terminates outside the tile; that is, the ray intersects the global
mesh at pointx outside the tile. We sample 32 additional points
x1 2 B along the ray, centered atx and over a half-tile range to
tolerate any global mesh reconstruction inaccuracy. The sampled
points B are sent to the surface MLP to output color and density
values; thus, tiles also reconstruct their background for all assigned
non-terminating rays passing through them. This encourages the
surface MLP to output colorcB = 0and densityf B = 0 for the empty
space within a tile.

The output surface colorcB with additional background sampling
step is the sum of the within-tile colorcB

Cand background colorcB
1:

cB = cB
C¸ cB

1• (13)

cB
C =

#Õ

8

) 8 � ¹1 � exp¹� f C
x8

X8ºº � cC
x8

• (14)

cB
1 = ) C�

jB jÕ

8

) 8 � ¹1 � exp¹� f 1
x8

X8ºº � c1
x8

• (15)

where) C is the remaining transparency value after sampling the
within-tile 3D points. Note that re�ection colorcA is also added to
produce the �nal ray color (Eq. 6). Thus, background sampling also
in�uences the training of the re�ection MLPs.

Background sampling is not necessary for rays that terminate
inside a tile. However, due to possible erroneous �oating or phantom
geometry in the global mesh, we still perform background sampling
for these rays as it helps to ignore erroneous geometry. For cases
where a ray does not intersect the global mesh at all, such as with
missing geometry, background sampling is not possible andcB

1 = 0.

4.3 Reflection Tile Groups for Sparse Images and Lights
In indoor scenes, light sources that create re�ections are likely to
be sparse; we also wish scene image sampling to be sparse too
to reduce capture workload. This leads to situations where rays
from input images may miss highlights entirely (Fig. 7) and fail to
associate them to tiles, causing missing highlights in renderings. We
overcome this by sharing re�ection MLP weights between groups of
neighbouring tiles. For instance, planar regions are likely to share
re�ection highlights caused by the same virtual light sources�e.g.,
all tiles that cover a large polished table have highlights from the
same ceiling light. Grouping also reduces the number of re�ection
MLPs during training and rendering, increasing speed.

Our approach has three steps:

(1) We apply variational shape approximation (VSA) [Cohen-Steiner
et al. 2004] to cluster connected co-planar triangles in the global
mesh. For this, we use the L2 distortion error between each clus-
ter and a planar proxy to segment the global mesh into di�erent
clusters of co-planar triangles (Fig. 8).

(2) Any tiles that intersect any triangle in a co-planar cluster from
VSA form a set of tilesT B.

Samples

Virtual light sourceReflection MLP

Surface

HL move direction

Captured point Light source

Tile

Group

GT Group-based Tile-based

First pass Second pass

Fig. 7. Reflection groups and two-pass training. Top: Reproducing highlight
reflections is di�icult when captured images are sparse, as they may not
associate a highlight with a tile. Suppose the gray surface is a polished table
reflecting an overhead light. The blue tile in the middle of the table is only
captured by rays that do not see the reflection, even though the reflection
should appear on the surface represented by the blue tile when viewed
from a slightly di�erent viewpoint. To overcome this, we use weight sharing
across tiles to group reflection MLPs.Middle: Training reflection MLPs per
tile leads to incomplete specular reflection renderings. This is significantly
improved by grouping tiles.Bo�om: Rendering results are produced through
a two-pass training strategy that also removes boundary artifacts between
tiles. Novel rendered view from theLiving Room from Xu et al.[2021] scene.

(3) Co-planar regions can be large, such as the �oor or ceiling,
which would restrict the quality of our re�ections if it were
covered by only one re�ection MLP. Instead, we partition sets
of co-planar tiles spatially by applying the k-means algorithm
to the center positions of each set of tilesT B. This produces
smaller �nal re�ection group tilesT 6 that can be represented
by lower-capacity MLPs. We set: = jTB j•40.

This process recreates re�ections more accurately than per-tile re-
�ection MLPs and reduces training and rendering time (Fig. 7).

4.4 Two-pass Training to Remove Boundary Artifacts
Background sampling allows tile surface MLPs to be trained in par-
allel independently; however, this can lead to discontinuity artifacts
in rendered images along tile boundaries. Further, tiles are also
grouped to share re�ection MLPs, which requires training on the
same GPU to reduce memory access costs.

ACM Trans. Graph., Vol. 41, No. 4, Article 98. Publication date: July 2022.



98:8 ˆ Xiuchao Wu, Jiamin Xu, Zihan Zhu, Hujun Bao, Qixing Huang, James Tompkin, and Weiwei Xu

Global mesh Tiles VSA Re�ection tile groups

Fig. 8. Reflection grouping results a�er using variational shape approximation (VSA) [Cohen-Steiner et al. 2004].We show the global mesh, the tiles allocation,
the VSA clusters, and final reflection tile grouping results.

To overcome these two issues, our training routine has two passes.
First, each tile's tMLPs are trained in parallel among GPUs by using
the loss in Equation 12, with the surface MLP trained �rst for 10
epochs as a bootstrap. We observe that the view-independent surface
color is mostly captured after this pass. Second, we perform cross-
group training to reduce discontinuity artifacts at tile boundaries.
We train tile re�ection MLPs using neighboring tile surface MLPs to
encourage consistent re�ections among tiles. We �nd neighboring
tiles for tile groupsT 6 via morphological dilation. Then, we �x
all surface MLPs parameters, and train the re�ection MLP ofT 6

using our standard training losses. This strategy produces smoother
transitions of re�ections across tile boundaries (Fig. 7).

4.5 Ray Sampling, Octrees, and Voxel Pruning
Surface MLPs.To reduce the computational cost of rendering

high-resolution images using neural �elds, we use an octree to store
the output of the surface MLP. For this, during training, each tile
is subdivided into64� 64� 64voxels that store color and volume
density values at their center (Fig. 9). We train the surface MLP for
a tile via the voxel data structure: we sample 3D points along a ray
within the tile, where each point is formed by trilinear interpolation
of nearby voxels with values predicted by the surface MLP.

We �x the number of sampled 3D points to 64 during training.
However, to improve sampling locality and accelerate training, we
perform voxel pruning after every 10 training epochs according to
the predicted volume density [Liu et al. 2020a]: We remove voxels
with low volume densityf or low accumulated transparency) .
This is because smallf may indicate empty space, and small)
along each ray in the training data may indicate an invisible voxel.
After pruning, we resample the 64 points along the remaining line
segments of the ray that still intersect voxels. Over training, this
concentrates sample points at high density areas within the tile.

To prune, �rst we group tile voxels into blocks: Voxels with index
¹8• 9• :º form a block if the values¹b8•� c•b9•� c•b: •� c are the same.
Hence, a block contains� 3 voxels. We conservatively prune the
block if every voxel inside a block has a density less than a threshold:

min
9=1•”””•�3

f 9 Ÿ � log¹Wº (16)

wheref 9 are voxel volume densities in the block.
Some voxels are occluded from all input views and so cannot

be pruned using the previous method. For example, voxels within
a tile but behind an opaque surface are occluded, but may still
have large density from MLP initialization. As such, after volume-
density-based pruning, we scatter transparency values computed

ViewpointTile Surface MLP

RGB!Trilinear interpolation
!"# $#%&

Voxel

Fig. 9. Voxel parameterization within each tile. Each 3D sample point receives
its color and volume density value by feeding the nearby voxel centers into
the surface MLP and performing trilinear interpolation on the MLP outputs.

for sampled 3D points along each training ray to voxel centers using
trilinear interpolation. If the maximum transparency value at a voxel
center is less than a thresholdg, we prune the voxel. This e�ectively
prunes occluded voxels because they do not accumulate signi�cant
transparency as rays are sampled.

Re�ection MLPs.Re�ection samples in the volume are located
`underneath' surfaces in the global mesh. Although the global mesh
provides a proxy for the true surface location within each tile, inac-
curacies such as �oating or missing geometries might in�uence the
sampled 3D points. Thus, we start re�ection MLP point sampling
when a ray �rst intersects an unpruned tile voxel. At each world
point, the re�ection might contain the entire scene. For instance, in
Fig. 1b (top), the wholeCo�ee Shopis re�ected in a polished metal
door. As such, we set the ray length for re�ection sampling to be the
diagonal length of the global mesh bounding box, and we uniformly
sample 64 points using1•Cas the sampling space.

Storage.After the training is �nished, we construct an octree
of depth two for each tile by setting the un-pruned voxels as leaf
nodes. We chose a depth of two to balance memory size and leaf-
node access cost. We do not store re�ection MLP SH coe�cients
within the octree as this would signi�cantly increase our memory
footprint [Yu et al. 2021a]; instead, the weights of re�ection MLPs
are stored independently and queried through their tile association.

In summary, we sample 3D points for surface and re�ection MLPs
respectively during training. Combining these 3D points with back-
ground sampling points lets each tMLPs be trained in parallel.
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Fig. 10.Post-process CNN architecture.It uses3 � 3 kernels for all layers.

5 RENDERING
Our tMLPs representation lets us store all scene data in GPU mem-
ory to ease a CUDA rendering implementation. To render an image
at a viewpoint, we trace rays through image plane pixels in parallel
and determine their associated tiles using fast voxel traversal [Ama-
natides et al. 1987]. Then, we render all rays in parallel using tile
octrees to obtain a surface color image�B. For re�ections, we deter-
mine each tile's re�ection group MLP, and then similarly compute
the re�ection color for each ray in parallel to obtain the re�ection
image�A. Then, we add�B and�A. As rendering�A is considerably
more expensive than rendering�B, this separation lets us balance
computation time and quality by rendering�Aat a reduced resolution
and then upsampling it.

Render�B with Octrees.Each CUDA thread is responsible for a
single rendered ray. For each tile intersected, we recursively search
its octree for non-empty children to determine the intersected leaf
nodes. Then, we ray march points along the ray within leaf voxels
with step length0”2 � ;, where; is the side-length of the voxel. The
pixel color of each ray is computed using Eq. 4.

Render�A with Re�ection MLPs.Each CUDA block is responsible
for a di�erent re�ection group MLP, and each CUDA thread is re-
sponsible for a set of ordered 3D points sampled along a ray that
intersects a tile associated with the re�ection group. We store re-
�ection MLP weights in shared GPU memory (48-99 KB on NVIDIA
3090) using the smaller �oat16 format: As shared GPU memory is
100� faster than global GPU memory, this makes real-time re�ec-
tion rendering possible. We implement a GPU kernel to obtain the
re�ection color of each ray using Eq. 5.

RGBD + Boundary CNN Post-processing.Rendering shallow oc-
trees and reduced-resolution re�ections can result in slightly blurred
images. To overcome this, we use an inexpensive feed-forward CNN
as a post-process to improve detail and reduce artifacts such as resid-
ual tile inconsistencies. The CNN takes as input an RGB image and
a depth image from the novel viewpoint. During rendering of�B, we
create the depth image by replacing RGB colors in Eq. 4 with depth
values. We additionally input a tile boundary image to provide more
signal to the CNN about potential inconsistencies. This is created
by �nding edges in images of the tile re�ection group index.

The network is trained using L2, SSIM, and VGG losses:

L CNN = L RGB¸ _BOUNDL BOUND¸ L SSIM¸ _VGGL VGG (17)

whereL RGBD•L BOUNDare mean square error for RGB and bound-
ary images, andL SSIM•L VGG are as de�ned previously.

Table 1.Scene Information.#Img denotes the total number of captured
images of the scene. Total/Octree Storage (GB) denotes the storage needed
in total and the storage for octree. Living Room1 denotesLiving Room from
Inria [Philip et al. 2021], and Living Room2 denotesLiving Room from Xu et
al. [2021]. N/A means area information was not provided [Philip et al. 2021].

Scene Area (< 2) #Img
Total/Octree
Storage (GB)

Training (day)
tMLPs + CNN

Sofa N/A 283 2.912 / 2.909 0.7 + 0.2
Living Room1 N/A 322 3.698 / 3.597 1.0 + 0.2
Living Room2 8.2� 6.3 2289 5.074 / 5.068 3.0 + 0.5
Bar 8.0� 10.0 1323 13.062 / 13.050 6.1 + 0.5
Co�ee Shop 8.3� 16.7 1288 14.136 / 14.128 6.5 + 0.5

6 PARAMETERS AND TRAINING ROUTINES
tMLP Architecture.For the surface MLP, we use 8 fully-connected

layers of size 128. As in Midenhall et al. [2020], we use 10 frequency
bands for the positional encoding. For the re�ection MLP, we use 8
fully-connected layers of size 64, which can be stored in the shared
memory of kernel blocks on modern GPUs for e�cient rendering.

tMLP Training.We use the ADAM optimizer [Kingma and Ba
2015] with weight decay14� 5. The learning rates for the surface and
re�ection MLP are initially set to be14� 3and14� 4respectively and
decay by a factor of0”95every5epochs. All scenes are trained for 50
epochs with a batch size of91� 91patches of rays. For pixels with the
highest10%L 2 values, we increase theirL 2 by 100%to accelerate
training. By default,_2 = 1”0• _SSIM= 1”0• _VGG = 0”1• _B = 1”0, and
_REG= 1”0. For mirrors (Appendix A), we set_B = 0”1.

At the beginning of training, the volume density predicted by
the initialized surface MLPs is still converging. Hence, we train
tMLPs with surface MLP only for ten epochs, and then continue
with training both surface and re�ection MLPs.

Voxel Pruning.We initializeW= 0”8 andg = 0”004. We decrease
Wby 0”1 and increaseg by 0”002every 10 epochs within the �rst
30 epochs. Block size� = 2 in the �rst 20epochs, reducing to1
afterwards due to the more reliable tMLPs estimate.

Post-process CNN.The CNN architecture is a U-Net [Ronneberger
et al. 2015] (Fig. 10) that is trained separately for each scene. We use
the ADAM optimizer with weight decay14� 5. Training images are
128� 128random crops from the captured images, in batches of 32.
The learning rate is set to54 � 4 at the beginning and decayed by
a factor of0”95every20epochs. We train for1500epochs, and set
_VGG = 0”1 and_BOUND= 2.

7 EXPERIMENTS

7.1 Setup
7.1.1 Scenes.We test our method on �ve indoor scenes (Tab. 1).
SofaandLiving Room from Inriaare from Philip et al. [2021], and
we use a secondLiving Room from Xu et al.[2021]. We captured two
larger indoor scenesBar andCo�ee Shopusing aCanon EOS 60D
digital single-lens re�ex camera. For missing areas larger than a tile,
we manually created simple proxies to �ll the space (Appendix B).
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Ours �2�X�U�V�����F�U�R�S�� Deep�%lending FVS SVSCaptured

Fig. 11. Comparisons with geometry proxy methodsDeepBlending [Hedman et al. 2018],FVS[Riegler and Koltun 2020] andSVS[Riegler and Koltun 2021]
on large scale indoor scene. Our method can faithfully reconstruct the accurate ceiling reflection of the outside beyond the window (top row), the highlights
reflected by the ground floor (middle row), and sharper details of the image synthesized at a virtual viewpoint (bo�om row), while deepblending, FVS and SVS
methods either fail to reconstruct the specular reflections (top two rows) or produce blurred results (bo�om row).

Table 2.�antitative comparisons.While the numbers are o�en close, please
see our complementary qualitative results that show significant di�erences
between these methods and improved quality of our method.

Scene Metric
Deep

Blending
FVS SVS Ours

Sofa
PSNR" 26.87 22.79 27.78 29.44
SSIM" 0.849 0.821 0.873 0.870

Living Room
from Inria [2021]

PSNR" 26.93 22.30 27.62 29.26
SSIM" 0.897 0.859 0.916 0.888

Living Room
from Xu et al.[2021]

PSNR" 27.87 24.97 29.91 29.56
SSIM" 0.861 0.818 0.882 0.839

Bar
PSNR" 26.14 22.12 27.15 26.69
SSIM" 0.754 0.667 0.791 0.739

Co�ee Shop
PSNR" 21.78 20.03 24.84 24.13
SSIM" 0.633 0.586 0.751 0.676

Camera Poses and Global Mesh Reconstruction.For our captured
dataBar and Co�ee Shop, we use software RealityCapture [Cap-
turingReality 2016], which can handle large textureless regions
like walls via Delaunay tetrahedralization [Jancosek and Pajdla
2011; Labatut et al. 2007]. The global mesh ofLiving Room from Xu
et al.[2021] was also reconstructed using RealityCapture using a
Kinect Azure RGBD camera.

Software and Hardware.We have implemented our method us-
ing PyTorch 1.9.0 [Paszke et al. 2019] for training. For each scene,
the tMLPs are optimized on a GPU server with eight Tesla V100
GPUs. The post-process CNN is optimized on one NVIDIA GeForce
RTX 3090 GPU. We report storage memory and training times of
tMLPs and CNN for each scene in Table 1. Per-frame render time
for 1280� 720pixels is 50ms on average after accelerating the
post-process CNN using TensorRT [Nvidia 2018] with 16-bit preci-
sion. The rendering con�guration is a desktop PC with an NVIDIA
GeForce RTX 3090 GPU and an Intel Xeon E5-2678 v3 2.50GHz CPU.

7.2 Rendering Results and Comparisons
Note:Please refer to our supplemental video to see improved tempo-
ral coherence and rendering of specular re�ections over baselines.

We qualitatively compare our method to view synthesis methods
DeepBlending [Hedman et al. 2018], Free View Synthesis (FVS)
[Riegler and Koltun 2020], and Stable View Synthesis (SVS) [Riegler
and Koltun 2021] in Figure 11. Our method produces photo-realistic
renderings with higher-quality view-dependent e�ects like high-
lights and re�ections. Table 2 holds quantitative measures, showing
that our method produces competitive PSNR and SSIM scores.

We also compare our method toNeRF[Mildenhall et al. 2020],
PlenOctrees [Yu et al. 2021a] andNSVF[Liu et al. 2020a] in Fig-
ure 12 and Table 3. We train all methods with all images fromLiving
Room from Inria[Philip et al. 2021] for the same amount of time.
We foundNSVFhas slow convergence rates and struggles to prune
empty space in large-scale scenes. However, if reconstructed ge-
ometry were incorporated to facilitate empty-space pruning, then
convergence and rendering quality may improve.NeRF with its
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GT NeRF PlenOctrees NSVF

Ours NeRF �ne tune PlenOctrees �ne tune NSVF �ne tune

Fig. 12. Comparisons withNeRF [Mildenhall et al. 2020],PlenOctrees [Yu et al. 2021a] andNSVF[Liu et al. 2020b]. We fine tune both methods using just
images facing the co�ee table; our result has both high quality and interactive rendering.

(a) GT (b) Ours, PSNR = 29.71, SSIM = 0.896 (c) NeRF, PSNR = 30.97, SSIM = 0.866 (d) w/larger CNN, PSNR = 31.01, SSIM = 0.901

Fig. 13.NeRF's higher PSNR is caused by boundary misalignment.Areas around reflections are blurred for standard NeRF (c), while our renderings (b) look
closer to the ground truth (a). Error maps (third row) show that our slightly lower PSNR is caused by boundary alignment errors. (d) Using a post-processing
CNN with 2� width in each layer reduces quantitative alignment errors and achieves higher PSNR and SSIM score than NeRF. However, a larger CNN slows
down rendering (6ms increase per frame).

Table 3.�antitative comparisons. On the Living Room from Inria [Philip
et al. 2021] scene, our approach and a large MLP via NeRF produce similar
PSNR and SSIM numbers even though quality di�ers; please see Figure 13.

Metric Ours NeRF PlenOctrees NSVF

PSNR" 29.26 30.99 26.13 22.06
SSIM" 0.888 0.877 0.806 0.733

MLP representation that directly optimizes view-dependent color
and volume density converges slower than our method, resulting in
less sharp images and missing re�ection highlights. In contrast, our
approach produces photo-realistic renderings.

As an additional test, we �ne tuneNeRF, PlenOctrees, and
NSVFwith images facing a smaller co�ee table region for the same
amount of time again that was spent training this area. For fair
comparison, the �ne-tuning images are not used to compute PSNR
and SSIM in Table 3. Our method is on-par withNeRF in that
both produce realistic view dependent e�ects on the small region,
but our rendering speed is interactive. WhilePlenOctrees also
enables interactive rendering, its renderings contain blurry artifacts.
One noteworthy item is that NeRF achieves higher PSNR than our
method (Tab. 3) even though our results are qualitatively better.
This is explained in Figure 13, where slight edge misalignments
cause high error. The cause is the post-processing CNN; adding
more trainable weights to the network resolves this issue.
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Fig. 14.Renderings from viewpoints far from captured images.On Living Room from Inria[Philip et al. 2021].Le�: Captured viewpoints visualized as basis
vectors centered and rotated to match the camera, and interpolated viewpoints marked with numbers 1, 2, and 3.Number 1:Viewpoint from the ceiling.
Number 2:Viewpoint from outside the wall.Number 3:Viewpoint above the the ceiling and outside the wall.
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Fig. 15.Dependence on accurate global mesh.The results show that our method can tolerate a certain degree of geometric error in the global mesh.

7.3 Evaluations
tMLP Representation.To evaluate the bene�ts of our two-MLP

representation, we compare the rendering quality of tMLPs with
that of a single MLP. To model view-dependent e�ects, the single
MLP outputs SH coe�cients for RGB colors (Fig. 3). We optimize
the single MLP and tMLPs under the same training setting, and for
fairness we use an MLP with more free parameters than we use for
tiles (10 linear layers each of size 128). Even with larger capacity, the
single MLP fails to reconstruct the re�ection, whereas our tMLPs
representation fairs better in reproducing the sharp re�ection.

View-dependent Re�ections.Figure 4 shows that a representation
of view-dependent e�ects as virtual lights at re�ection distances
using only 0-th order SH coe�cients�e�ectively a di�use re�ection
that still varies with viewpoint�fails to reproduce specular re�ec-
tions on curved surfaces. In contrast, the 2nd-order SH used in our
method begins to allow the salient specular re�ections to emerge on
the curved glass display. Even on planar surfaces, the higher-order

SH coe�cients provide a bene�t in reproducing re�ections more
accurately (Fig. 4, bottom, with quantitative metrics in Tab. 5).

Rendering at Viewpoints Far from Captured Poses.When rendering
at viewpoints extrapolated beyond the convex hull of captured
camera poses, such as outside the wall or on the ceiling, our method
still has good rendering quality (Fig. 14).

Global Mesh Accuracy Dependence.We test our algorithm using
a global mesh that is perturbed under di�erent noise levels, using
Living Room from Inria[Philip et al. 2021]. We add Gaussian noise to
each vertex along its normal, with mean and standard deviation set
to 1•1000, 1•4000of the shortest length of the global mesh bounding
box respectively. As our method only uses the global mesh as an
intersection proxy, it is robust to signi�cant noise that causes the
living room to be hard to recognize (Fig. 15 and Tab. 5). We also test
the case of geometry missing from the global mesh by removing a
chair back that would otherwise be occupied by 7 tiles. The render-
ing result is comparable to that of the full global mesh except that
the back of chair disappears, as expected (Fig. 15).
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Ours w/o CNN

Fig. 16.Post-process CNN reduces miscoloring and tile boundary line artifacts.
On the Sofa(top) andCo�ee Shop(bo�om) scenes.

Table 4. Loss ablations onLiving Room from Inria[Philip et al. 2021].

Metric Ours w/o L B w/o L VGG w/o L SSIM w/o L REG

PSNR" 28.44 28.20 28.03 27.38 28.14
SSIM" 0.870 0.865 0.862 0.848 0.863

Table 5. Ablations onLiving Room from Inria[Philip et al. 2021]. BG: Back-
ground sampling. P1 / P2: Global mesh vertex perturbation sampled from
a Gaussian with mean and stdev. of P11/4000and P21/1000of the shortest
length of the total mesh bounding box.

Metric Ours w/o BG w/o CNN P1 P2 0th-order SH

PSNR" 28.44 22.55 28.05 27.73 26.74 27.05
SSIM" 0.870 0.769 0.859 0.859 0.847 0.866

CNN Post-process.The CNN post-process re�nes the rendering,
e.g., making the tile boundaries more consistent (Fig. 16). We report
quantitative results for this improvement using PSNR/SSIM metrics
in Table 5, computed over a randomly-selected set of 10% of the
captured images held-out from the training set.

Ablation Studies.We validate our loss terms and our background
sampling strategy by eliminating each from training individually
(Tab. 4 and 5). The data termL 2 in Equation 7 always remains to ob-
tain meaningful results. Qualitatively, the perception lossL VGGand
the SSIM lossL SSIMhelp to obtain sharper rendering results with
less blurry artifacts near image boundaries (Fig. 17). The regulariza-
tion lossL REGreduces blurring in recovered planar re�ections. The
surface lossL B encourages more accurate decomposition (Fig. 5).
Finally, without background sampling, the background color for
each tile must be optimized through 3D points inside the tile; this
in�uences the output of the surface MLP and the re�ection MLP,
causing blurring from phantom volume density (Fig. 6).

8 CONCLUSION AND DISCUSSION
For neural rendering to be broadly useful, it must scale to larger
scenes and provide interactive rendering. To scale, our method repre-
sents the scene via tiles over a volume. To parallelize tile training, we
proposed a background sampling algorithm to remove dependence
between tiles. Tiles include two MLPs: a surface MLP to encode
view-independent re�ection and a re�ection MLP to encode view-
dependent re�ection via virtual lights, which signi�cantly reduces
the angular sampling rate required to reconstruct high-frequency
re�ections. This separation also allows us to achieve rendering at
20 fps on average by baking view independence into a �xed octree.

Tile Size.In terms of trade-o�s, tile size determines scene detail
and both training and rendering times. Too large and the MLPs
struggles to represent all detail; too small and training/render mem-
ory and time becomes a bottleneck. Further, as tile size increases,
so too does its empty space. This causes more rays to pass through
without intersecting any of the tile's global mesh geometry, again
increasing integration time as the tile is sampled along the ray.

Limitations.We wish to capture images sparsely for large scenes
to reduce capture e�ort. However, sparse samples might lead to
inadequate training data for some tiles, resulting in phantom voxels
or blurred renderings. For instance, this occurs inCo�ee Shopat
the top of a girder (Fig. 18). Moreover, not all re�ections are always
reconstructed�sparse unstructured input makes it very di�cult
to ensure highlights are always reconstructed, as highlights might
appear in only a handful of images in the dataset (Figs. 3 and 4).
The quality of our re�ections can also be a little blurry. Finally, for
curved surfaces with high curvature, the virtual points beneath
the surface vary according to the surface normal, which increases
the required amount of captured images to reconstruct specular
re�ections faithfully. Under this situation, it is still hard to leverage
tMLPs to encode all specular re�ections (Fig. 4).

Our global mesh reconstructions occasionally su�er �oating ge-
ometries in the recovered result. This can cause errors in tiles, es-
pecially in empty spaces that are only included along ray paths by
�oating geometry. We found that errors are usually small, and that
discarding rays that intersect �oating geometry for those tiles did
not degrade the rendering of objects behind so long as the appear-
ance is well de�ned by rays from other viewpoints.

Future Work.Our contributions improve scalability through tiling
a scene; however, other approaches in this fast-moving �eld will
likely complement our approach. For instance, integrating adaptive
octree resolutions across tiles may improve quality, and hashing
techniques can save time and memory [Müller et al. 2022].
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GT Ours w/oL VGG w/o L SSIM

Fig. 17.Adding structure similarity and VGG losses improves quality. �alitative ablation study on L VGG and L SSIM, showing rendered results of the tea table
in Living Room from Xu et al.[2021].

Fig. 18.Rendering artifacts due to sparse image sampling.SinceCo�ee Shop
is large, we did not capture enough images to train the tMLPs for the tiles
on the top of the girder. This results in inaccurate or phantom voxels and
blurred rendering results.
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Fig. 19.Le�: Tiles enclosing transparent glasses displayed in black lines.
Right:Rendering result for these tiles.

A TRANSPARENT GLASS AND MIRRORS
These two types of objects are special cases in our pipeline, since
their geometries cannot be reconstructed using MVS software.

Without manual e�ort, our method can handle transparent glass
in front of opaque surfaces within the same tile (Fig. 19). For example,
a wine bottle display cabinet could have transparent glasses on its
doors, so long as the depth of the cabinet, including the glasses and
reconstructed surfaces of wine bottles, were enclosed by one tile.
Here, rendered image quality is good because the glass does not
appear in the global mesh and so it is reconstructed as a volumetric
object. Note that specular re�ections in the transparent glass are
captured if the distance between the re�ected object and the glass
plane is larger than the distance between the glass and its opaque
surface behind�this is typical for a display cabinet. In this case, the
re�ection MLP encodes the specular re�ections.

If the thickness of the transparent object is larger than the tile
thickness or there is no opaque surface behind the glass within the
same tile, then our method will fail to render the transparent object.

For mirrors, like inLiving Room from Xu et al.[2021], we man-
ually mark them in the global mesh. Then, we simply ignore the
surface MLPs for rays that intersect mirrors and instead encode the
entire appearance using the re�ection MLPs. Since small viewpoint
changes lead to dramatic appearance changes for mirrors, we group
all tiles that intersect a mirror.

One question with mirrors that may arise is how to ignore cap-
turing the re�ected image of the photographer capturing the scene.
While Xu et al. [Xu et al. 2021] simply ray trace the rest of the
reconstructed scene to avoid the photographer, our case is di�erent.
One reason that the photographer is not in the rendering might be
because they are included in few images and because the photogra-
pher moves between images (unlike lights that cause re�ections).
This e�ectively makes them an outlier in the reconstruction.

Fig. 20.Le�: Captured input image of a light.Middle:Original geometry of
the light obtained from the RealityCapture so�ware.Right:Added proxy
for the light that is later turned into a volumetric reconstruction.

B GEOMETRY PROXIES
In the Bar andCo�ee Shopscenes that we captured ourselves, we
found that the geometries for textureless thin objects or for light
sources causing image overexposure might fail to be reconstructed.
Even though our method can handle missing geometries enclosed
by a tile, large missing areas might lead to no allocated tiles. For
these occasional cases, we manually place cuboid and plane proxies
into the global mesh before tiling (Fig. 20). For theBar scene, we
create 14 proxies: eight chairs, three lights, and three planes to
cover large holes in walls. For theCo�ee Shopscene, we place four
planes to cover wall and ground holes, and place �ve planes for
glass windows. If desired, the e�ort to create proxies for thin objects
can be reduced by using a depth camera, though adding proxies for
transparent objects would still be required.
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